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1 Executive summary

Active development proceeded in all of the research topics.Major accomplishments include:

1. Development of statistical methodology

• Improved and tested our tempered simulation. Based on discussions with Michael
Lavine, we implemented a generalized concept of “hot” chains beyond powering-up
the posterior distribution.

• Continued development of our hybrid multiple-level MCMC methodology, benchmark-
ing the strategy for an upcoming methods paper

• Investigated effect of indistinguishability in mixture components on convergence and
bias in posterior distributions

2. Development of persistence technology

• Completed, debugged and tested serialization and persistence for nearly all BIE meth-
ods.

3. Preparation for final code release

• Continuing to “plug holes” in documentation

• Improved reliability of autoconf-based configuration, adding automatic warnings about
dependencies

• Code sanitized for adherence to ANSI C++ standards, latest versions of the Boost and
GTK libraries

4. Astronomical applications
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• Designed tests using a suite of synthetic galaxy images to benchmark our new GALFIT-
like galaxy image analyzer which we have code-named GALPHAT for GALaxy PHo-
tometric ATtributes. We have begun analyzing 2MASS galaxy images and have begun
a collaboration with the COSMOS group and have tested GALPHAT on their images.

• Using our hybrid simulated tempering–differential evolution MCMC algorithm, we
have achieved convergent posterior distributions for our semi-analytic-model (BIE–
SAM) code. We are continuing to augment the problem definition to include more
complex “real-world” data sets such as Tully-Fisher and HI mass distributions.

• We have completed and tested our color-magnitude diagramgenerator based on the
most recent isochrone tracks that included the AGB and post-AGB stellar evolution
phases. We are beginning our test its performance on simulated and 2MASS We may
now make start count predictions along any line of sight given a star-formation history,
metallicity distribution in space. We will test both our model and methodology using
2MASS LMC/SMC data.

2 No-cost extension

Although our award date is March 15, 2006, for some reason, wewere not notified until June
2006. We were not able to get a post-doc on-board until the following year, so we requested
an institutional 12 month extension. If possible, I would like to request an additional six month
extension beyond this point to give the post-doc a full 3 years and to give us time to finish up the
final publications and code release.

3 Research milestones and summary

I will detail some of the advances below and end with a list of Milestones for the final period.

1 System development

The implementation of the persistence subsystem is now complete, documented, and extensively
tested. We are currently using it in-house for all of our projects and it will be in the final code
release.

We have used the persistence subsystem to implement a full checkpointing scheme. Checkpoint-
ing goes beyond save/restore in that it saves what is happening in themiddle of a Markov chain.
Running these chains is the most time-consuming part of running the BIE, and thus the most vulner-
able to crashes, etc. Checkpointing allows one to resume after a crash, or if one needed or desired
to abandon a computation for some reason. We can trigger checkpointing based on the number of
iterations since the last checkpoint, the amount of time that has passed, or upon user request via
typing a certain control character on the console.

In addition, the user may use checkpoint save sets to recall the state of previous simulation for
future updates based on new data or for model comparison and selection. For now, storage of save-
sets is the user’s responsibility. However, this implementation lays the groundwork for a future
SVN-based data+metadata repository.
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Other system developments include generalizing and increasing the interoperability of the class
structure to permit unanticipated future uses.

2 GALPHAT

2.1 Motivation

We had originally intended to use BIE as a back end for GALFIT . GALFIT is a modular pack-
age written to perform two dimensional image decompositions for galaxies which are from nearby
to distant (Peng et al. 2002). We found that the pixel integration and PSF convolution were too
inaccurate and time-consuming for our application which necessitated our rewriting the model
generation code. We have code-named the new parameter determination package GALPHAT for
GALaxy PHotomometric ATtributes. Our combination of this approach with our Bayesian Infer-
ence Engine back end, which will allow GALFIT-based investigations of the full posterior not just
the extremum mode, and will establish proper prior distributions, which allow inferences using
Bayes Factors over a wide variety of competing models and hypotheses.

As a reminder, our likelihood function is

P(D | θ) =
exp(−1

2[D−M(θ)]tW[D−M(θ)])

(2π)N pix/2| W |−1/2
(1)

whereD is data vector(Nx × Ny), M(θ) is a model vector andW is a weight matrix for pixel
value. Our models include with a mixture of Sérsic profile a user-supplied prior for each param-
eter. Each Sérsic profile has 8 free parameters in the fit: centroid of the profile(xc,yc), integrated
magnitude(Mtot) which is related withΣe, effective radius(re), Sérsic index(n), axis ratio(b/a), po-
sition angle(PA) and diskiness/boxiness(c). In addition, we specify a model for the sky background
with 3 free parameters:sky level, sky gradient in X, Y direction.

During the last 12 months, GALPHAT has been tested using simulated galaxies, incorporating
the advanced features of BIE such hierarchical simulation levels, multiple MCMC algorithms and
persistence. We performed more comprehensive tests based on ensemble images of single Sérsic
galaxies simulated with different galaxy structural parameters (magnitude, size, Sérsic index, axis
ratio, position angle). As a function of the signal-to-noise ratio (S/N, using signal and noise within
half-light radius). Figures 1 and 2 show the difference between the input parameters and the output
parameters derived from the whole ensemble of posterior distributions. Overall, parameter dis-
persion becomes smaller as S/N increases (see Fig. 1). Surprisingly, the dispersion in structural
parameters decreases only slightly with increasing image size (see Fig. 2). The Sérsic index and
galaxy half-light radius are biased high due to the nature ofSérsic profile, while magnitude pos-
terior distribution is not skewed. The unchanging 99.7% confidence interval is due to the angular
degeneracy for face-on galaxies.

By experimenting with different MCMC algorithms, priors and proposal widths, we identified
combinations that yielded a robust posterior for 2MASS bulge-disk decomposition analysis. These
include an observationally motivated non-informative prior for galaxy half-light radius and assum-
ing a common center for all profiles in the mixture. For limited number of test cases, More compre-
hensive tests are ongoing. In addition, we have characterized 2MASS sample properties by deriving
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luminosity function with different measuring techniques and comparing with the previously pub-
lished data (Kochanek et al. 2001). Our results are very similar except for slight difference in
normalization, which may be due to differences in sky coverage.

3 SAMS–BIE

Galaxy formation and evolution has been one of the most challenging problems in astrophysics
owing to the interplay of multiple physical processes on hugely disparate time and length scales.
Modeling or simulating galaxies from the first principle is impossible currently, semi-analytic mod-
els (SAMs) use phenomenological prescriptions of the processes too difficult to study from first
principles. By comparing the SAM predictions to observations, researchers hope to identify the
key processes controlling galaxy formation. SAMs are attractive, and have a remarkable number of
citations, for the following reasons. First, they are builtupon the CDM structure formation frame-
work, proven to be a successful model on cosmological scales. Second, standard CDM techniques
produce a large sample of galaxies using Monte Carlo methodsfor observational comparisons.
Third, and most important for its popularity, SAMs have a much lower computational cost than
direct simulation.

Nevertheless, a number of inherent thorny problems in this approach may limit its contribution
to true understanding. Typically in semi-analytic modeling, a subset of model parameters are held
fixed while others are adjusted to match observations (e.g. the galaxy luminosity function or stellar
mass function, the Tully-Fisher relation, and color distribution). If the match is unsatisfactory, the
practitioner either further adjusts some of the parametersor changes the model until the “best fit”
is achieved. This procedure is flawed for a number of reasons:

1. The goodness of fit is usually assessed “by eye”, and the agreement between the model
with the observations becomes a subjective proxy for model selection. There is no attempt
to account for the prior information or the model dimensionally in rejecting competing hy-
potheses.

2. Owing to our lack of first-principle knowledge, the recipes live in a high-dimensional pa-
rameter space. Since some if not all of the parameters are expected to be covariant, the
isosurfaces of the likelihood function are almost certainly complex and multi-modal. Ex-
ploring this space “by hand” is impossible. The significanceof a “reasonable” agreement
found after a small number of attempts is impossible to quantify and the complex likelihood
function produces tremendous difficulty in determining howto improve the agreement of the
model.

3. Given the topological complexity of likelihood functionin the high-dimensional model space,
its restricted variation in a small subset of parameters (a “cut”) may have little bearing on
the true probability over a properly marginalized distribution. In other words, because the
influence of any single process is conditional on all the physical processes in the entire galaxy
formation model, the knowledge of the variation obtained byadjusting a single parameter is
also conditional on the fixed parameters in the model. Insight gained from a particular cut is
therefore likely to be circumstantial rather than informative.

4



Probabilistically, the SAM method is a model selection problem. Bayesian inference provides
a consistent approach to all of the problems identified above, automatically providing the entire
probability distribution of the parameters. Our goal is putsemi-analytic modeling on rigorous
probabilistic footing. To incorporate the approach into the framework of Bayesian inference, we
have implemented a SAM that incorporates all of mainstream SAMs. This will allow us to compare
with published results and test various proposed parameterizations.

3.1 Our SAM

We have implemented recipes for the following processes: 1)radiative cooling; 2) star formation;
3) supernova feedback; 4) galaxy mergers; 5) stellar population synthesis; and 6) dust extinction.
A flowchart describing the structure of the model is shown in Figure 3. The parameters are summa-
rized in the Table 1. Our fiducial model is a restriction to 13 free parameters, since the remainder
do not influence our prediction of the stellar mass function.For each parameter, we choose a prior
distribution that brackets the values that other groups have adopted and as required for physical
consistency. Figure 4 outlines the computation, typical ofmost Bayesian posterior simulations:
the MCMC algorithm provides proposal parameter vectors forthe SAM, and the SAM predicts
the galaxy populations using the parameter set. The likelihood is evaluated by comparing the pre-
dictions with the observations, and is returned to the MCMC procedure. The converged posterior
samples contain the full probability distribution of the model parameters for the given observational
data.

Using the Bayesian approach, we expect to fully investigatethe posterior probability distribution
of the model for given observations. First, we should be ableto layout the degeneracy between
parameters if it exist. Second, we can marginalize the parameters that we are not interested in and
sketch the probability distribution of the model parameters. Third, we can integral the posterior
probability over the entire parameter space to derive the Bayes factor to test one hypothesis against
another.

3.2 Example: the stellar mass function

We simplify the problem by assuming the error in each stellarmass bin is independent. A paper
in preparation describes the effected of correlated error in detail. With this simplification, the
likelihood is written as

L(Φobs|θ) = L0exp

{

−∑
i

(logΦi,obs− logΦi,mod)
2

2σ2
i,obs

}

, (2)

whereL0 is an arbitrary normalization factor,Φi,obsandΦi,mod are the stellar mass functions of the
ith bin from observation and the model (resp.) for a given parameter setθ, andσi,obs is the variance
of the observed logarithmic stellar mass function. Since the model variance is smaller than the
data variance as we tested using different merger tree sets,we ignore the model variance in the
likelihood.

We now describe the results of three example inferences. In the first, Model 0, we adopt weakly
informative priors for all the 13 parameters; in the second one, Model 1, we adopt narrow priors to
some of the parameters; in the third, Model 2, we further restrict the prior distributions to reproduce
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Table 1: Model parameters
# Parameter Meaning Prior Posterior

[1.5 , 4.5] [2.01, 2.97] [3.27, 4.47]
1 logMcc(M⊙) cooling cut-off halo mass [1.5 , 4.5] [3.15, 4.47]

[1.5 , 4.5] [1.95, 2.37]
[-3, 0] [-2.31, -0.150]

2 logαSF star formation efficiency power-law amplitude [-3, 0] [-2.25, -1.83]
[-3, 0] [-1.71, -0.870]
[-1, 12] [-0.870, 10.6]

3 βSF star formation efficiency power-law index [-0.2, 0.2] [-0.2, 0.2]
[-0.2, 0.2] [-0.2, 0.2]
[1.5, 3.0] [1.52, 2.54]

4 logVSF (km/s) star formation law turn-over halo circular velocity [2.1, 2.3] [2.1, 2.3]
[2.1, 2.3] [2.1, 2.3]

[-2, 2] [-1.88, 1.96]
5 logΣSF (M⊙/pc2) star formation threshold gas surface density [0.8, 1.2] [0.8, 1.2]

[0.8, 1.2] [0.8, 1.2]
[-3, 1] [-2.96, -0.720] [-0.400, 0.960]

6 logαSN SN feedback energy fraction [-3, 1] [0.160, 0.960]
[-3, 1] [-1.04, -0.320]
[-4, 2] [-3.94, 1.34]

7 logαRH SN feedback reheating power-law amplitude [-4, 2] [-2.02, -0.820]
[-4, 2] [0.260, 1.22] [1.70, 1.94]
[0, 12] [0.360, 11.6]

8 βRH SN feedback reheating power-law index [0, 12] [6.60, 10.4]
[-0.2, 0.2] [-0.2, 0.2]

[-3, 0] [-2.97, -0.210]
9 logeW fraction of SN feedback energy used for powering wind [-3, 0] [-2.97, -1.35]

[-3, 0] [-0.270, -0.0300]
[-3, 0] [-2.97, -0.0300]

10 logfRI fraction of re-infall ejected hot gas [-3, 0] [-2.97, -0.0300]
[-3, 0] [-2.97, -0.630]
[-2, 2] [0.520, 1.96]

11 log fDF merging time-scale in dynamical friction time-scale [-2, 2] [0.840, 1.96]
[-2, 2] [-1.96, -0.520]
[-3, 0] [-2.97, -0.0300]

12 logαSB merger triggered star burst efficiency power-law amplitude [-3, 0] [-2.97, -0.0900]
[-3, 0] [-2.97, -0.150]
[0, 2] [0.0200, 1.94]

13 βSB merger triggered star burst efficiency power-law index [0, 2] [0.020, 1.98]
[0, 2] [0.020, 1.98]

14 αEJ (fixed) SN feedback cold gas ejection power-law amplitude 0.0 0.0

15 βEJ (fixed) SN feedback cold gas ejection power-law index 0.0 0.0

16 fMG (fixed) major merger minor merger threshold 0.3 0.3
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the Croton model (Croton et al. 2006). We choose narrow priors for parameters that do not affect
the predictions. These include the power-law dependence ofthe star formation efficiency on the
halo circular velocity. For these cases, we set the prior to be consistent with the existing models
(Croton model, in particular).

The marginalized posterior distribution of key parametersfor each of the models is shown in
Figure 5, 6, and 7 (respectively). Clearly, some are only weakly constrained. For example,eW, the
efficiency of SN feedback for powering galactic wind, is weakly constrained by the stellar mass
function. In addition to that, we see some parameters are strongly correlated. For example, the
βSF—βRH, αRH—βRH , andMcc— fDF dimensions. These correlations are understandable in the
context of CDM based galaxy formation models. To suppress the star formation in small halos,
either the star formation rate must be intrinsically small or the SN feedback must be enhanced to
keep these systems from active star formation. The posterior distribution of βSF—βRH implies
either a sharply declining star formation efficiency against small halo mass or a steep SN feedback
reheating halo mass dependence. The distribution ofαRH—βRH , the two parameters in the power-
law formalism for the SN feedback reheating model, are strongly correlated. Finally, the correlation
Mcc and fDF implies that sufficient numbers of massive galaxies requireeither rapid merging with
little hot-gas cooling or slow merging but rapid hot-gas cooling.

On the other hand, some parameters are tightly constrained by the stellar mass function. Figure
5 reveals a sharp turn-over halo circular velocity (≈ 160km/s) in the star-formation efficiency law.
In other words, the star formation efficiency must decrease sharply with decreasing halo mass. The
parameters,βSF andβRH, are also tightly constrained. We find higher values for these parameters
(6 for βSF and 8 forβRH) than found in early SAM results.

In Model 1, we choose a narrow prior[−0.2,0.2] for βSF consistent with published SAM inves-
tigations (e.g. Croton et al. 2006 use 0 for this parameter).Based on Model 0, we apply narrow
Gaussian priors for logVSF ∼ N(2.2,0.02), based on observational evidence of a star-formation
threshold at approximately 10 M⊙/pc2 we choose logΣSF∼ N(1.0,0.03). Figure 6 shows the pos-
terior distribution. We note the following differences. First, a quick comparison with Figure 5
shows the effect of the narrow priors improves the constraints in other dimensions. For example,
we have constrained the star formation law to have shallow dependence on halo mass dependence.
Therefore, the SN feedback reheating is forced to be a steep function

Previous studies have concluded that the SAMs over predict the number of small galaxies when
star-formation efficiency is a shallow function of halo mass, but the fit remains “reasonable.” Is
a “reasonable” fit maintained in a high-dimensional parameter space keeping the star formation
and SN feedback power-laws flat? To address this, we further add a narrow prior for the parameter
βRH ∈ [−0.2,0.2]. Figure 7, shows the results. The mode moves dramatically with respect to Model
1. To compensate for the weaker SN reheating in small halos due to the flat SN feedback reheating
law, the model increases the reheating and wind (the mode in logαRH− logεW plane moves from
the lower-left corner to the upper-right corner). The shapeof the correlation between logαSN and
logαRH obtained in this inference is similar to the results of Henriques et al. (2008) using Croton
model (αSN andαRH in our model are equivalent toεhalo andεdisk in Croton model).

From these simple examples, we conclude that a pinning a parameter without prior information
leads to a spurious inference. Since many of the parameters are correlated, inappropriately fixing
one parameter will unrealistically constrain to other parameters.
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4 Star count analyses

With deep data sets of asymptotic giant branch (AGB) stars from nearby galaxies such as the Large
and the Small Magellanic Clouds (LMC and SMC, respectively), modeling their structure using
theoretical models of stellar evolution has become feasible. The Magellanic Clouds are particularly
good candidates for such modeling given their proximity to the Milky Way and given that extinction
towards the Clouds is small and their stars are very well resolved.

Color–magnitude diagrams (CMDs) produced from isochronesof stellar evolution models, com-
bined with age–metallicity relations and a model of the galaxies’ stellar structures are used as input
data (prior) for the Bayesian Inference machinery.

4.1 Generating CMDs from Isochrones

As a first step, the generation of CMDs from sets of theoretical isochrones was solved. This step
turned out to be more way more involved than anticipated. Briefly, theoretical isochrones, available
at five different metallicities (see Cioni et al. 2006) were used, using a sequence of interpolations
(in stellar mass, metallicity, and age). On top of that, star–formation rate (SFR) histories (SFRHs)
and age–metallicity relations (AMRs) had to be provided (see Pagel & Tautvaisiene 1998, Carrera
et al. 2008). The initial mass function (IMF) is assumed to beindependent of age and equal to the
log–normal function of Chabrier (2001).

The combination of these ingredients produce CMDs for sets of stars within the desired ranges
of age and metallicity. These CMDs then have to be convolved with a model of the structure of the
galaxy (incl. a realistic treatment of extinction towards the line–of–sight of the galaxy) to produce
full model CMDs that can be compared with observed ones. The existing BIE machinery already
included a very simple model for the different ingredient; and the different parts had to be replaced
with the more sophisticated new model generator.

4.2 Integration with BIE

After a very stringent set of tests the CMD generator was integrated with the existing Bayesian
Inference machinery. Unfortunately, the CMD generator wasoriginally coded in C, whereas BIE
uses a very elegant version of C++, which resulted in a whole series of necessary re–writes, bugs
(some of which took quite a while to find) and bug fixes.

In addition, several parts of the CMD generator turned out tobe too slow and had to be optimized.
In the first version of the modeling, a set of stars with fixed SFRHs and AMRs is being used as input
data for the BIE, which uses a simple model for the galaxy structure (varying different structure
parameters). In the original version of the code, querying the set of stars (which BIE does many
times) took over 300 seconds for a sample of about forty thousand stars. This turned running a
single step inside BIE into a major endeavor and made runninga realistic BIE simulation with
thousands of steps prohibitively expensive.

After a very intensive study of data structures, the new version of the code now takes a few
seconds for the same operation (very detailed tests of the results ensured that the routine returns the
correct data). Furthermore, the code has been expanded to enable reading previously generated data
sets from disk, which, for the aforementioned sample of forty thousand stars, eliminates another
twelve hundred seconds of time. Ten minutes might not seem all that much, but it becomes very
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relevant especially in the debugging and early developmentphase. The CMD generator is now fully
integrated, optimized, and tested to run with BIE.

4 Milestones for the final period

1. Statistical & MCMC development

• Continued testing and exploration of novel techniques for rapid improvement of mixing
and convergence for high-dimensional complex posterior distributions typical of real-
world astronomical problems.

• We will provide qualitative suggestions and wisdom for choosing various MCMC al-
gorithms and diagnostic procedures, a suite of examples, test code, and complete docu-
mentation.

2. GALPHAT

• We will finish the GALPHAT performance tests including budge-disk analysis, using
simulated galaxies and finish the GALPHAT methods paper (Yoon et al. 2009)

• We will implement a Minimum Covariance Determinate Estimator for calculating Bayes
factors and characterize the power of BIE in model comparison problem using simulated
galaxy images.

• We will synthetically sample single Sérsic galaxies from adistribution of parameter
space (e.g. luminosity function, Sérsic index distribution, galaxy size distribution).
From these galaxy samples, we will derive posterior distributions using different priors
and compare the result to the input distribution of simulated galaxy population. This
will enable us to access the importance of prior for galaxy image analysis and provide
guidance to future users.

• We will complete the analysis of (approx. 500) of 2MASS sample using GALPHAT and
derive structural properties, which will be compared to previously published observa-
tions including, but not limited to bulge-disk ratio, magnitude-size relation, observed
distribution of size and Sérsic index. Informed by these results, we will proceed to
analyze the full sample of 2000 2MASS galaxy images.

3. Semi-analytic models

• The error in stellar mass function includes the counting noise in each stellar mass bin
and the systematic uncertainties that are correlated across all the bins. In particular,
the uncertainties of the stellar population synthetic model, which is used to estimate
the stellar mass from the observed stellar light, affects the entire stellar mass function.
We will explore the more direct alternative approach: predicting luminosity function
directly from the model and use the observed luminosity function.
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• We will implement the newest stellar population synthesis model (BC07), which in-
corporates the thermally pulsing AGB star into the model andwork with the K-band
luminosity function.

• We will explore the sensitivity to the CB07 and BC03 models and anticipate an analysis
using Bayes factor model selction.

• Lu et al. (in prep.) has demonstrated that the model recipes for radiative cooling predict
different cooling rate because of their different implementation, and more importantly,
none of the existing model predict cooling rate agree with current SPH simulation. The
models in general under predict the cold model accretion forsmall halos and over pre-
dict cooling rate in massive halos. Lu et al. has proposed a new model that incorporates
cold mode accretion explicitly into SAM. We are planning to implement the new model
into the BIE-SAM study. Using observations as stellar mass function HI mass function
etc., we can study if the cold model accretion is significantly supported by observation.

4. Star count analyis

• We will test more complex galaxy structure models in addition to the simple exponential
disk model used to date.

• A realistic model for extinction towards the SMC/LMC is already included in the mod-
ule and is thus not required. We will explore generalizations for other nearby galaxies.

• Once all model parts are production ready, with realistic structure models will start to
model the structure of the LMC and SMC. We anticipate minor work on optimizing the
calculation of the spatial domain, but the other model components are fully optimized
and thoroughly tested. Once the mechanism has been successfully applied to either the
LMC or SMC, applying it to other galaxies requires no additional work. We anticipate
astronomical results and a paper by the end of the extended award period.
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Figure 1: Parameter residual as a function of SN. From left toright and upper to lower, magni-
tude residual(output-input), half-light radius scaled byinput value, Sérsic index residual, axis ratio
scaled by input value, position angle residual, sky residual. Every SN bin contains 100 galaxies
with different input structural parameters; input half-light radius is uniform in 6-14 pixel, input
axis ratio is uniform in 0.1-1.0, input Sérsic index is uniform in 0.7-7.0, position angle is uniform
in 0-90. SN bin is 5.0, 10.0, 20.0, 50.0, 100.0 each. charcoal, red, blue boxes include 68.3, 95.4,
99.73% confidence interval corresponding 1,2,3 sigma. And cross is posterior median and two bars
at the end is min and max of data. PSF FWHM is 2.96, far larger than the minimum half-light
radius of galaxies.
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Figure 2: Parameter residual as a function of image size (denoted as a 1/2 of one side of square
image) compare to galaxy half-light radius. All symbols aresame as in Fig. 1.
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Figure 3: The structure of the SAM. The parameters explored in the these noted in the text.
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Figure 4: The structure of the Bayesian approach based SAM.
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Figure 5: The marginalized posterior distribution of some parameters for Model 0. The color
coding represents certain confident level as shown in the upper color-bar. The horizontal bars in the
1-Dimensional marginalized posterior distributions cover the 95% confident range.15



Figure 6: The marginalized posterior distribution of some parameters for Model 1. Note that the
parameters,βSF , VSF andΣSF , in the upper triangle are assigned to have narrow priors.
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Figure 7: The marginalized posterior distribution of some parameters for Model 2. Note that the
parameters,βSF , VSF , ΣSF andβRH , in the upper triangle are assigned to have narrow priors.
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Figure 8: The best fix stellar mass function from the posterior samples of Model 0 (red), Model 1
(green) and Model 2 (blue). The black line with error bars denotes the observations. Note that the
plotted error bars are inflated by factor of 3 as used in the likelihood evaluation to accommodate
the unknown systematic error in the observation data.
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